
Introduction	to	Universe	
Programs

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	3.1

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Module	Outline

• We	will	learn	about	the	Universe	module,	
which	we	will	use	to	create	interactive	
animations.

• We	will	learn	how	to	do	“iterative	
refinement”– that	is,	adding	features	to	a	
program

• We	will	learn	more	about	how	to	design	data.
• We’ll	do	all	this	in	the	context	of	3	versions	of	
a	simple	system.

2

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Module	03

3

Let's	see	where	we	are

Adding	a	New	Feature	to	an	Existing	Program

1.	Perform information	analysis	for	new	feature

2.	Modify	data	definitions as	needed

3.	Update	existing	functions	to	work	withnew	data	
definitions

4.	Write	wishlist of	functions	for	new	feature

5.	Design	new	functions	following	the	DesignRecipe

6.	Repeat	for	the	next	new	feature

4

The	Six	Principles	 for Writing	Beautiful	Programs

1.	Programming	is	a	People	Discipline

2.	Represent	Information	as	Data;	Interpret	Data	as	
Information

3. Programs	should	consist	of	functions	and	
methods	that	consume	and	produce	values

4.	Design	Functions Systematically

5.	Design	Systems	Iteratively

6.	Pass	values	when	you	can,	share	state	only	when	
you	must.

The System	Design	Recipe

1.	Write	a	purpose	statement	for	your	system.

2.	Design	data	to	represent	the	relevant	information in	
the	world.

3.	Make	a	wishlist of	main	functions.		Write	down	their	
contracts	and	purpose	statements.

4.	Design	the	individual	functions.	Maintain	a	wishlist
(or	wishtree)	of	functions	you	will	need	to	write.

This	module	 is	mostly	about	
principle	#5:	“Design	Systems	
Iteratively”

Learning	Objectives	for	this	lesson
• In	this	lesson,	you	will	learn	about	the	2htdp/universe	
module,	which	allows	you	to	create	interactive	
animations.

• At	the	end	of	this	lesson,	students	should	be	able	to:
– Use	the	2htdp/universe	module	to	create	a	simple	
interactive	animation,	including:
• Analyzing	data	to	determine	whether	it	should	be	constant	or	part	
of	the	world	state,

• Writing	data	definitions	for	worlds,	key	events,	and	mouse	events,	
and

• Writing	code	to	handle	the	various	events	during	the	animation.	
– Explain	the	steps	of	the	System	Design	Recipe

5

The	2htdp/universe	module

• Provides	a	way	of	creating	and	running	an	
interactive	machine.

• Machine	will	have	some	state.
• Machine	can	respond	to	inputs.
• Response	to	input	is	described	as	a	function.
• Machine	can	show	its	state	as	a	scene.
• We	will	use	this	to	create	interactive	
animations.

6

Example:	a	traffic	light
• The	light	is	a	machine	that	responds	to	time	passing;	as	
time	passes,	the	light	goes	through	its	cycle	of	colors.

• The	state	of	the	machine	consists	of	its	current	color	
and	the	amount	of	time	(in	ticks)	until	the	next	change	
of	color.		At	every	tick,	the	amount	of	time	decreases	
by	1.		

• When	the	timer	reaches	0,	the	light	goes	to	its	next	
color	(from	green	to	yellow,	from	yellow	to	red,		from	
red	to	green),	and	the	timer	is	reset	to	the	number	of	
ticks	that	light	should	stay	in	its	new	color.		

• In	addition,	the	traffic	light	should	be	able	to	display	
itself	as	scene,	perhaps	like	the	one	on	the	slide.

7

Traffic	Light	Example
• The	traffic	light	is	the	machine.	Its	state	is	compound	
information:
– its	current	color	AND	#	of	ticks	until	next	change

• Inputs	will	be	the	time	(ticks).	At	every	tick,	the	timer	is	
decremented.

• When	the	timer	reaches	0,	the	light	goes	to	its	next	
color	(from	green	to	yellow,	from	yellow	to	red,		from	
red	to	green),	and	the	timer	is	reset	to	the	number	of	
ticks	that	light	should	stay	in	its	new	color.	

• The	traffic	light	can	show	its	state	as	a	scene,	perhaps	
something	like	this:

8

A	second	example:	The	Falling	Cat	
Problem	Statement

• We	will	produce	an	animation	of	a	falling	cat.
• The	cat	will	starts	at	the	top	of	the	canvas,	and	
fall	at	a	constant	velocity.

• If	the	cat	is	falling,	hitting	the	space	bar	should	
pause	the	cat.

• If	the	cat	is	paused,	hitting	the	space	bar	
should	unpause the	cat.

9

falling-cat.rkt demo

10

https://www.youtube.com/watch?v=ojHukwW-vuw

The	Falling	Cat:
Information	Analysis

• There	are	the	only	two	things	that	change	as	
the	animation	progresses:	the	position	of	the	
cat,	and	whether	or	not	the	cat	is	paused.		So	
that’s	what	we	put	in	the	state:

• The	state	of	the	machine	will	consist	of:
– an	integer	describing	the	y-position	of	the	cat.
– a	Boolean	describing	whether	or	not	the	cat	is	
paused

11

Falling	Cat:
Data	Design

(define-struct world (pos paused?))
;; A World is a (make-world Integer Boolean)
;; Interpretation:
;; pos describes how far the cat has fallen, in pixels.
;; paused? describes whether or not the cat is paused.

;; template:
;; world-fn : World -> ??
;(define (world-fn w)
; (... (world-pos w) (world-paused? w)))

12

Falling	Cat	1:
Information	Analysis,	part	2

• What	inputs	does	the	cat	respond	to?
• Answer:	it	responds	to	time	passing	and	to	key	
strokes

13

What	kind	of	Key	Events	does	it	
respond	to?

• It	responds	to	the	space	character,	which	is	
represented	by	the	string	"	"	that	consists	of	a	
single	space.

• All	other	key	events	are	ignored.

14

Next,	make	a	wishlist

• What	functions	will	we	need	for	our	
application?

• Write	contracts	and	purpose	statements	for	
these	functions.

• Then	design	each	function	in	turn.

15

Wishlist	(1):	How	does	it	respond	to	
time	passing?

We	express	the	answer	as	a	function:

;; world-after-tick: World -> World
;; RETURNS: the world that should
;; follow the given world after a
;; tick.

16

Wishlist	(2):	How	does	it	respond	to	
key	events?

;; world-after-key-event :
;; World KeyEvent -> World
;; RETURNS: the world that should follow the given world
;; after the given key event.
;; on space, toggle paused?-- ignore all others

Here	we've	written	the	purpose	
statement	in	two	parts.		The	first	

is	the	general	specification	
("produces	 the	world	that	

should	 follow	the	given	world	
after	the	given	key	event"),	and	
the	second	is	a	more	specific	

statement	of	what	that	world	is.

17

Wishlist	(3)

• We	also	need	to	render the	state	as	a	scene:

;; world-to-scene : World -> Scene
;; RETURNS: a Scene that portrays the given
;; world.

Another	response	
described	as	a	
function!

18

Wishlist	(4):	Running	the	world
;; main : Integer -> World
;; GIVEN: the initial y-position in the cat
;; EFFECT: runs the simulation, starting with the cat
;; falling
;; RETURNS: the final state of the world

Here	the	function	has	an	effect	in	the	real	
world	(like	 reading	or	printing).	 	We		
document	 this	by	writing	an	EFFECT	
clause	in	our	purpose	 statement.

For	now,	 functions	 like	main will	be	our	
only	functions	 with	real-world	effects.	All	
our	other	 functions	will	be	pure:		that	is,	
they	compute	a	value	that	is	a	
mathematical	function	of	their	arguments.		
They	will	not	have	side-effects.

Side-effects	make	it	much	more	difficult	 to	
understand	what	a	function	 does.		We	will	
cover	these	much	later	in	the	course.

19

Next:	develop	each	of	the	functions

;; world-after-tick : World -> World
;; RETURNS: the world that should follow the given
;; world after a tick

;; EXAMPLES:
;; cat falling:
;; (world-after-tick unpaused-world-at-20)
;; = unpaused-world-at-28
;; cat paused:
;; (world-after-tick paused-world-at-20)
;; = paused-world-at-20

We	add	some	examples.		We've	included	some	
commentary	and	used	symbolic	names	so	the	
reader	can	see	what	the	examples	illustrate.

20

Choose	strategy	to	match	the	data

• World is	compound,	so	use	the	template	for	
World

;; strategy: use template for World on w
(define (world-after-tick w)
(... (world-pos w) (world-paused? w)))

• What	goes	in	... ?
• If	the	world	is	paused,	we	should	return	w
unchanged.		Otherwise,	we	should	return	a	world	
in	which	the	cat	has	fallen	CATSPEED pixels.

21

Function	Definition
;; STRATEGY: Use template for World on w

(define (world-after-tick w)
(if (world-paused? w)

w
(make-world (+ (world-pos w) CATSPEED)

(world-paused? w))))

Here	we’ve	just	written	out	
the	function	because	it	was	so	
simple.		If	it	were	any	more	
complicated,	we	might	break	
it	up	into	pieces,	as	on	the	
next	slide.

A	more	complete	description	 of	our	strategy	might	be

STRATEGY:	Use	template	for	World	on	w,	then	cases	on	
whether	w	is	paused.

You	don’t	have	to	be	so	detailed.		

22

Function	Definition
;; STRATEGY: Use template for World on w

(define (world-after-tick w)
(if (world-paused? w)

(paused-world-after-tick w)
(unpaused-world-after-tick w))

Here	we’ve	broken	 the	definition	 into	pieces.		If	either	
of	the	pieces	is	complicated,	this	would	be	better	code	
than	what	we	saw	on	the	preceding	slide.

23

Tests
(define unpaused-world-at-20 (make-world 20 false))
(define paused-world-at-20 (make-world 20 true))
(define unpaused-world-at-28 (make-world (+ 20 CATSPEED) false))
(define paused-world-at-28 (make-world (+ 20 CATSPEED) true))

(begin-for-tests
(check-equal?

(world-after-tick unpaused-world-at-20)
unpaused-world-at-28
"in unpaused world, the cat should fall CATSPEED pixels and world should
still be unpaused")

(check-equal?
(world-after-tick paused-world-at-20)
paused-world-at-20
"in paused world, cat should be unmoved"))

24

How	does	it	respond	to	key	events?

;; world-after-key-event :
;; World KeyEvent -> World
;; GIVEN: a world w
;; RETURNS: the world that should follow the given world
;; after the given key event.
;; on space, toggle paused?-- ignore all others
;; EXAMPLES: see tests below
;; STRATEGY: cases on kev : KeyEvent

(define (world-after-key-event w kev)
(cond
[(key=? kev " ")
(world-with-paused-toggled w)]
[else w])) We	make	a	decision	based	on	

kev,	and	pass	the	data	on	 to	a	
help	function	 to	do	the	real	work.

25

Requirements	for	Helper	Function
;; world-with-paused-toggled : World -> World
;; RETURNS: a world just like the given one, but with
;; paused? toggled

If	this	helper	function	 does	what	it's	
supposed	 to,	then	world-after-key-event	will	
do	what	it is	supposed	 to	do.

26

Tests	(1)
;; for world-after-key-event, we have 4
;; equivalence classes: all combinations of:
;; a paused world and an unpaused world,
;; and a "pause" key event and a "non-pause" key
;; event

;; Give symbolic names to "typical" values:
;; we have these for worlds,
;; now we'll add them for key events:
(define pause-key-event " ")
(define non-pause-key-event "q")

27

Tests	(2)
(check-equal?
(world-after-key-event
paused-world-at-20
pause-key-event)
unpaused-world-at-20
"after pause key, a paused world should become unpaused")

(check-equal?
(world-after-key-event
unpaused-world-at-20
pause-key-event)
paused-world-at-20

"after pause key, an unpaused world should become paused")

28

Tests	(3)
(check-equal?
(world-after-key-event
paused-world-at-20
non-pause-key-event)

paused-world-at-20
"after a non-pause key, a paused world should be
unchanged")

(check-equal?
(world-after-key-event
unpaused-world-at-20
non-pause-key-event)

unpaused-world-at-20
"after a non-pause key, an unpaused world should be
unchanged")

29

Tests	(4)
(define (world-after-key-event w kev) ...)

(begin-for-test
(check-equal? ...)
(check-equal? ...)
(check-equal? ...)
(check-equal? ...))

(define (world-with-paused-toggled? w) ...)

Here's	how	we	lay	out	
the	tests	in	our	file.

Contract,	purpose	
function,	 etc.,	for	
world-with-paused-
toggled?

30

Now	we're	ready	to	design	our	help	
function

31

Definition	for	Helper	Function
;; world-with-paused-toggled : World -> World
;; RETURNS: a world just like the given one, but with
;; paused? toggled
;; STRATEGY: Use template for World on w
(define (world-with-paused-toggled w)
(make-world
(world-pos w)
(not (world-paused? w))))

Don't	need	to	test	this	
separately,	since	tests	for		
world-after-key-event
already	test	it.

32

What	else	is	on	our	wishlist?

;; world-to-scene : World -> Scene
;; RETURNS: a Scene that portrays the given world.
;; EXAMPLE:
;; (world-to-scene (make-world 20 ??))
;; = (place-image CAT-IMAGE CAT-X-COORD 20 EMPTY-CANVAS)
;; STRATEGY: use template for World on w

(define (world-to-scene w)
(place-image CAT-IMAGE CAT-X-COORD

(world-pos w)
EMPTY-CANVAS)) Here's	where	we	decompose	w.		Note	

that	we	don't	need	(world-paused?
w).		That's	ok– the	template	tells	us	
what	we	can use,	not	what	we	must
use.	

33

Testing	world-to-scene
;; an image showing the cat at Y = 20
;; check this visually to make sure it's what you want
(define image-at-20 (place-image CAT-IMAGE CAT-X-COORD 20 EMPTY-CANVAS))

;; these tests are only helpful if image-at-20 is the right image.
;; Here I've made the strings into error messages. This is often
;; works well.

(begin-for-tests
(check-equal?
(world->scene unpaused-world-at-20)
image-at-20
"unpaused world yields incorrect image")

(check-equal?
(world->scene paused-world-at-20)
image-at-20
"paused world yields incorrect image"))

34

Last	wishlist item
;; main : Integer -> World
;; GIVEN: the initial y-position in the cat
;; EFFECT: runs the simulation, starting with the cat
;; falling
;; RETURNS: the final state of the world

The real	purpose	 of	main is	not	to	return	a	
useful	value;	instead,	its	purpose	 is	have	
some	visible	effect	in	the	real	world– in	
this	case,	to	display	some	things	on	the	
real	screen	and	take	input	 from	the	real	
user.		We	document	 this	in	the	purpose	
statement	by	writing	an	EFFECT clause.

35

Template	for	big-bang
;; big-bang
;; EFFECT : runs a world with the specified event handlers.
;; RETURNS: the final state of the world
(big-bang

initial-world
(on-tick tick-handler rate)
(on-key key-handler)
(on-draw render-fcn)))

names	of	events functions	 for	
responses

frame	rate	in	
secs/tick

There	are	other	events	that	big-bang	
recognizes,	see	the	Help	Desk	for	details

36

Putting	the	pieces	together
;; main : Integer -> World
;; GIVEN: the initial y-position in the cat
;; EFFECT: runs the simulation, starting with the cat
;; falling
;; RETURNS: the final state of the world
;; STRATEGY: Combine simpler functions
(define (main initial-pos)
(big-bang (make-world initial-pos false)

(on-tick world-after-tick 0.5)
(on-key world-after-key-event)
(on-draw world-to-scene)))

Here	the	simpler	 functions	
are	big-bang,	world-after-
tick,	world-after-key-event,	
and	world-to-scene

37

Let's	walk	through	falling-cat.rkt

• Note:	this	video	differs	from	our	current	
technology	in	a	couple	of	ways:
– it	talks	about	test	suites;	these	are	replaced	by	begin-
for-test.

– it	talks	about	"partition	data"	and	gives	a	template	for	
FallingCatKeyEvents.		We've	simplified	the	
presentation-- now	we	just	have	KeyEvents,	which	are	
scalars	(no	template	needed),	and	we	take	them	apart	
using	the	"Cases"	strategy.

– And	remember,	the	“Structural	Decomposition”	
strategy	is	now	called	“Use	template”.

38

falling-cat.rkt readthrough

39

https://www.youtube.com/watch?v=ahAoFZVVqio

The	System	Design	Recipe

• In	building	this	system,	we	were	actually	
following	a	recipe.

• This	recipe	is	so	widely	usable	that	we	give	it	a	
name:	the	System	Design	Recipe.

• Here	it	is– you	can	see	that	it	matches	what	
we	did.

40

The System	Design	Recipe
1.	Write	a	purpose	statement	for	your	system.
2.	Design	data	to	represent	the	relevant	information in	the	
world.
3.	Make	a	wishlist of	main	functions.		Write	down	their	
contracts	and	purpose	statements.
4.	Design	the	individual	functions.	Maintain	a	wishlist (or	
wishtree)	of	functions	you	will	need	to	write.

41

Summary

• The	universe	module	provides	a	way	of	creating	
and	running	an	interactive	machine.

• Machine	will	have	some	state.
• Machine	can	respond	to	inputs.
• Response	to	input	is	described	as	a	function.
• Machine	can	show	its	state	as	a	scene.
• We	use	this	to	create	interactive	animations.
• We	built	a	system,	using	the	system	design	recipe.	

42

Next	Steps

• Study	the	files	in	the	Examples	folder.
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	3.1
• Go	on	to	the	next	lesson

43

